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Structural aspects of the nematic± isotropic transition in liquid
crystals: an investigation using a development of the

Lebwohl± Lasher lattice model

by DOMINIQUE GONIN
PCSM, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

and ALAN WINDLE*
Department of Materials Science and Metallurgy, Cambridge University,

Pembroke St., Cambridge CB2 3QZ, UK

(Received 13 January 1997; in ® nal form 1 June 1997; accepted 13 June 1997)

This paper explores further the predictions of the Lebwohl± Lasher model [1] for the
description of order in a liquid crystalline system, especially in the region of the nematic±
isotropic transition. The model is based on a lattice, each cell of which contains a director
representing the long axis of a rod molecule. The energy of each director is determined by
the relative orientations of its six nearest neighbours, and the probability of a director
orientation being moved to another chosen at random depends on the Boltzmann function
of the di� erence between the old and the new energies in accord with the normal Monte
Carlo procedure. The validity of this model to describe this transition has been demonstrated
in several previous studies [2± 16] and its simplicity permits calculations over a statistically
signi® cant number of molecules.

Preliminary studies of the model behaviour have been made below the transition temperature
in order to investigate the in¯ uence of boundary conditions. The simulated 7 P2 8 and
7 P2 8 / 7 P4 8 quantities are compared both with experimental data and with the theory of
Maier and Saupe [17]. The predictions of the model are analysed in the normal way using
the Ornstein± Zernike expression for pairwise correlation functions, while this expression is
modi® ed in order to describe the short-range order which is superimposed on the background
level of long-range order present in the nematic phase. The model’s predictions of enthalpy
changes across the transition are compared with calorimetric data from the literature [18].
The opportunity of working with a large model is taken to extend the Zhang plot to test for
the presence of ® rst order character within the transition.

A structural description of the transition is proposed, based on the molecular director
maps, and the identi® cation of more ordered and less ordered regions achieved by the analysis
of the distribution of local energies into two sub-distributions with widths in accord with the
mean values of their energies. As the transition is approached from above, the isotropic melt
structure is seen to contain nematic nuclei which increase in volume fraction with decreasing
temperature. At the transition these nuclei appear to join to give a percolating phase having
a single orientation across the model. With decreasing temperature within the nematic region,
isolated regions of disorder become continually smaller with a corresponding increase in the
overall order parameter (P2 ).

This paper focuses particularly on the structural implications of the predicted nematic±
isotropic transition. It is recognized that aspects characterizing the physics of the transition
can be obtained through averaging energy parameters over very large numbers of cycles, and
using models as large as possible. While the 503 model presented here is particularly large by
current standards, it is designed in this way to show a representative picture of the structure
in the transition region. The aspect of the work reported, despite the availability of a large
model, does not seek to generate better averages than previously reported, and the calculation
of some such parameters in the earlier sections is to check that the model is behaving properly
and in accord with results reported previously.

*Author for correspondence.
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490 D. Gonin and A. Windle

1. Introduction with Fi the free energy density in the isotropic phase.
The B and C coe� cients are only weakly temperatureThe magnitude of the scalar order parameter Q in the

nematic phase and its evolution with temperature can dependent close to the transition, and B characterizes
the strength of the ® rst order character of the transition.be predicted by molecular ® eld theories. These theories

are based on the mean ® eld approximation [17], and If the series is truncated after the Q4 term, the order
parameter at the transition point has the simple form:consequently do not given any information concerning

short-range orientational correlations. Furthermore, it
QNI=2B/3C. (3)appears that in the nematic phase, a few degrees below

the transition, a correct ® t to and interpretation of The A coe� cient changes sign according to:
experimental data become rather di� cult [19, 20], and

A=a(T Õ T *) (4)the values of Q calculated from the mean ® eld approach
are an over-estimate. This shortcoming is likely to be

where T * (T *<TNI) is the temperature at which theassociated with the fact that short-range order is mod-
isotropic phase is totally unstable. The absolute stabilityelled only poorly by mean ® eld theories while at these
limit of the nematic phase T ** (T **>TNI) can also betemperatures local ¯ uctuations in the degree of order in
de® ned, and the order parameters at T * and T ** are,the nematic occur. A corollary of this conjecture is the
respectively:experimental evidence of short-range order just above

the transition temperature, well-known as p̀re-trans- Q*=B/C (5)
itional e� ects’. Indeed, de Gennes extended the Landau

Q**=B/2C. (6)theory to the description of these phenomena, describing
the true isotropic state as a uniform system devoid of In the nematic phase, the temperature dependence of
nematic droplets, or s̀warms’ [21± 23]. the order parameter can be ® tted with the formula:

Pre-transitional e� ects occur in the isotropic phase as
the temperature reduces towards the nematic± isotropic Q=Q**+k(T ** Õ T )b (7)
transition temperature TNI . Even though there is no long

where b=0 5́ where equation (2) is truncated.range order in this temperature range (the macroscopic
A simple static description of the nematic± isotropicorder parameter having vanished discontinuously at TNI

transition cannot be totally satisfactory, since orderon heating), the material still shows evidence of local
parameter modulus ¯ uctuations can strongly in¯ uenceorder. The liquid has an inhomogeneous distribution of
the thermodynamic behaviour at the transition. Defree energy density at any instant in time, and discon-
Gennes succeeded in accounting for the ¯ uctuations bynected nematic nuclei are associated with the lower
adding spatial derivatives to the expansion by means ofenergy regions [23], the absence of orientational correla-
the continuum theory:tion from one swarm to another being consistent with

the absence of long-range order. The average size of
these regions of short-range order is given by the F=Fi+ . . . +

1

2
L 1 A q

qxi
QjkB

2

+
1

2
L 2 A q

qxj
QjkB

2

(8)
characteristic distance j(T ), called the coherence
length. with L 1 and L 2 the elastic constants in the isotropic

Close to the transition, the thermodynamic behaviour phase. This generalized Landau± de Gennes (GLDG)
of the material is usually described by the well-known theory leads to a better description of the nematic nuclei,
Landau± de Gennes (LDG) theory [21± 25]. The density without abrupt changes in orientation at their borders.
of free energy is expanded in powers of the tensor order The response functions are de® ned in terms of correla-
parameters. For a uniaxial nematic phase, this tensor tion functions, and the temperature dependence of the
expressed through the director components has a very correlation length is found to be:
simple matrix form:

j=j0A
T *

T Õ T *B
1/2

(9)

[Q]=C
Õ Q/2

Õ Q/2

QD (1)
where j0 has molecular dimensions. The analysis of the
correlation functions in the Orstein± Zernike approxi-
mation predicts the spatial correlation of the orderand the expansion of the free energy in terms of order
parameter to have the form:parameter modulus is then:

F=Fi+
1

2
AQ2 Õ

1

3
BQ3+

1

4
CQ4+ . . . (2) 7 Q (0)Q (R) 8 =

const
R

exp (Õ R/j). (10)
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491Structural aspects of the N± I transition

2. Simulations 2.2. The application of the Lebwohl± Lasher model to
this study2.1. Lebwohl± L asher model

The Hamiltonian is written in the form:The Lebwohl± Lasher (LL) model is a simpli® ed rep-
resentation of the nematic liquid crystal, since the centres
of gravity of the mesogenic units are con® ned to the H=A �

7 i,j 8
sin2 hij=HLL+

2

3
A (13)

sites of a cubic lattice. The molecules are free to rotate
to minimize their interaction energy with their nearest

with A= (3/2)e and the summation limited to neigh-neighbours, but there is no possible coupling between
bouring cells. Expressed in this way, the Hamiltonianposition and orientation. The Hamiltonian is derived
links to previous work in which microstructure wasfrom the Maier± Saupe attractive anisotropic interaction
modelled at the meso-level [29], where the sin2 h func-pair-potential:
tion proved a good approximation to the dependence of
elastic distortion energy on director misalignment asHLL=Õ e �

7 i,j 8
P2(cos hij ) (11)

described by continuum theory. For a given distortion
of the nematic ® eld, the energy of a volume ( l3 ) scales

where the sum is over all pairs of nearest neighbours, e as kl in the continuum case, where k is the uni® ed elastic
is a positive constant, and hij is the angle between the constant from Frank’s equation (splay=twist=bend).
long axes of the two neighbouring molecules. The value of the constant A can thus be assessed for the

cell of edge length equal to molecular dimensions usedHowever, despite its simplicity the model is extremely
in the LL model, a, as ka. The value of k is knowne� ective in predicting the order parameter right up to
experimentally to be in the range 0 5́± 1 0́ Ö 10Õ 11 J mÕ 1

the nematic± isotropic transition, and it has been widely
for small molecule liquid crystals, and à ’ is of the orderused, especially with the Monte Carlo method. Terms
of 1 nm. Hence A is in the range 0 5́ Ö 10Õ 20 ±can be added to the Hamiltonian to get a better descrip-
1 0́ Ö 10Õ 20 J. The approximation that A=10Õ 20 Jtion for real materials [12, 14], or to study di� erent
leads to predictions of the nematic± isotropic transitionsystems such as ferroelectrics [26, 27]. The model, in its
temperature in the range 400 Ô 125 K, in generalmost simple form, has been shown to provide all the
accord with real materials.important characteristics of the nematic± isotropic phase

The calculations have been performed on 503 cubictransition, in accordance with experiment. The precision
lattices with periodic boundary conditions. This size ofof the prediction of the order of the transition and its
lattice, while being the maximum practicable with thetemperature is, as ever, limited by the ® nite size of the
resources available, should enable TNI(50) to be verymodel used.
close to TNI as indicated by equation (12): TNI(50)=A better estimate of the precise transition temperature
TNI(2)+0 0́33K for a material with a 298 K N± I trans-and associated parameters, as well as a more precise
ition. The Metropolis Monte Carlo algorithm has beenstudy of pre-transitional e� ects has been achieved either
applied to obtain the thermodynamical equilibrium con-by correlation function analysis [6, 16] or by using [12]
® gurations, with a slight modi® cation in that the newthe Ferrenberg± Swendsen re-weighting technique [28]
con® gurations are retained with a probability p:

combined with Lee± Kosterlitz ® nite size scaling analysis
[11]. The latter authors have shown the validity of the

p=
exp (Õ DE/kT )

1+exp (Õ DE/kT )
(14)® nite-size scaling relation:

DT ( ; TNI Õ TNI(L ))=const (L d ) Õ 1 (12) with DE=Enew Õ Eold . The probability is 0 5́ if the two
energies are equal, and tends quickly to 1 as Enew

L d=N being the lattice size. Hence for the system size decreases with respect to Eold . The description is thus
of 163, a constant of (15 6́ Ô 8 2́)e/kB , kB being the more realistic for a model based on molecular scale
Boltzmann factor, and a transition temperature of entities, where the continuum practice of taking p to be
1 1́232e/kB=298 K, the calculated transition temper- equal to 1, whenever Enew becomes lower than Eold , is
ature would be within 1 Ô 0 5́3 degrees above the true less appropriate, especially when DE is small.
value. The LL approach, in the latter case, has also The equilibrium is considered to be reached when the
provided evidence for the ® rst order character of the same level of average global order is obtained for models
nematic± isotropic transition. Indeed, a d̀ouble-well’ dis- started, in turn, from a perfectly ordered system and
tribution of the free energy as a function of nematic from a totally disordered system. The various averages
order has been shown, although in a very small are then calculated over 1200, 2400 or 12 000 cycles,

depending on the stability of the calculated parametertemperature range around the transition [12].
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492 D. Gonin and A. Windle

at a given temperature, where a cycle corresponds to
one visit per cell, or 503 visits over the model as a whole.

The nematic order parameter is de® ned as:

7 P2 8 =T 3 cos2 h Õ 1

2 U N
(15)

where h is the angle between a given molecular axis and
the nematic director. The director orientation is found
using an algorithm which searches for the unit vector
direction which gives the maximum value of 7 P2 8 for a
given con® guration. The 7 P2 8 values are sampled at
regular intervals of time once the model has reached
equilibrium, and the best value taken as the temporal
average.

Another parameter computed as the model average is Figure 1. Plots of the order parameter as determined from
the LL model for a 203 model against reduced temperaturethe mean of the local interaction energies 7 Elocal 8 which
for di� erent boundary conditions. Compensated freecan be expressed as:
boundary conditions (full circles); periodic boundary con-
ditions (open circles); data from a 203 model embedded
in a 503 model (crosses).7 Elocal 8 =

A

NT �
7 i,j 8

sin2 hijU . (16)

The probability distribution of the local energy, P(Elocal), a factor which compensates for the missing nearest
is given by the summation over each cell and its nearest neighboursÐ one for a face, two for an edge and so on.
neighbours, built up using all the model cells, over the The temperature dependence of 7 P2 8 has been calcu-
run time of the model after an equilibrium state has lated with a 203 lattice with the two di� erent boundary
developed from the start up con® guration. conditions, and compared with a reference, obtained by

To evaluate short-range order, the angular pair cor- examination of a 203 central region embedded in a 503

relation coe� cient [6, 7] G2(r12)= 7 P2 (cosh12 ) 8 has also lattice with periodic boundary conditions. The results in
been calculated, where h12 is the angle between the ® gure 1 show good agreement between the reference and
molecules of cells 1 and 2. This coe� cient gives the the periodic boundary conditions in close proximity to
correlation between the orientations of two particles the transition, although there is some indication that the
separated by any distance r12 , up to the limits imposed order for the periodic boundaries at temperatures less
by model size. It is then a measure of short-range order than 0 9́5 is rather higher than the reference. The fact
for small values of r12 , and tends to the nematic order that the order does not drop instantly to zero at the
parameter squared 7 P2 8 2 when r12 tends to in® nity [30]. transition is associated with the presence of short-range
The G2 (r12 ) decay above the transition temperature can order nematic nuclei of dimensions approaching that of
be ® tted with an Ornstein± Zernike form [6]. the model (203). The p̀rint through’ of the order within

the nematic nuclei onto the 7 P2 8 versus temperature
plot above the transition will be reduced for the larger3. Determination of order parameters from the model

3.1. In¯ uence of the boundary conditions models ( look ahead to ® gure 2 (closed circles)), and
would of course be absent for an in® nite model. ThePeriodic boundary conditions are usually applied in

lattice modelling in order to simulate an in® nite system, energy compensated free boundaries gave rise to a P2

versus temperature relationship which neverthelessputting the lattice in a self-similar environment. The
concern over periodic boundary conditions stems from appears to show residual free boundary e� ects. This

approach has not been pursued further.their possible contribution to long range order, in that
orientational information from one extremity of the In the work which follows, all the calculations have

been done with periodic boundary conditions.model is translated to the other side. As a comparison,
ènergy compensated free boundary’ conditions were
also investigated. In this case, the state of orientation is 3.2. Quanti® cation of long-range and short-range order

Results obtained for the temperature dependence ofnot copied from one side of the array to the other side,
and the orientation of the directors in the border cells the order parameter are comparable to previous reports

for smaller lattices, except above the transition, whereis left free, although in order to avoid melting due to
surface e� ects, the border cell energies are rescaled with the residual global order parameter due to ® nite model
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493Structural aspects of the N± I transition

Figure 3. Temperature dependence of the ratio 7 P4 8 / 7 P2 8
calculated from the 503 model (closed circles ® tted with
the solid line). The model data are compared with theFigure 2. Plot of the order parameter against temperature
Maier± Saupe prediction (dotted curve) and with experi-for a 503 model with periodic boundary conditions (full
mental points measured at constant pressure by Kohlicircles) ® tted with equation (7) with the b parameter=
et al. [32] (open circles and dashed line).0 3́2 (solid line). The dotted line is the Maier± Saupe

prediction, while the open triangles are for experimental
data for PAA at constant volume [20], and the open
circles data for the same material at constant pressure
[31].

size is predictably smaller (see ® gure 2). The quantitative
values of 7 P2 8 below the transition temperature are in
good agreement with experimental data measured at
constant volume for the rigid molecule PAA [20]. Such
experimental data are not available close to the trans-
ition, but it can be seen that the shape of the curve is
similar to the experimental curves measured at constant
pressure by de Jeu et al. [31], for the same molecule
( ® gure 2). The curves are di� erent from the Maier± Saupe
prediction, falling o� too rapidly just as the transition Figure 4. Fit of the angular pair correlation coe� cients deter-

mined from the model to equation (17): at T /TNI=0 9́22,is approached, but can be ® tted with equation (7), giving
with j=4´9 (full circles); at T /TNI=0 9́85, with j=6´4Q**=0 1́3, k=0 1́3, b=0 3́2 and (T ** Õ TNI)/TNI=
(open diamonds); at T /TNI=1, with j=7´8 (full squares).0 1́8 Ö 10Õ 3. It is also noteworthy that the Maier± Saupe

predictions for the ratio 7 P4 8 / 7 P2 8 ( ® gure 3) are higher
decay of order with increasing pair correlation distancethan both the experimental values of Kohli et al. [32]
at values of T /TNI of 0 9́225, 0 9́852 and 1. As theand the predictions of the 503 Lebwohl± Lasher model
coherence length j was expected to reach in® nity at T *which are in closer agreement with each other.
on cooling, the decreasing part of the plots of ® gure 4The quanti® cation of short-range order in the pre-
were ® rst ® tted to (const/r12 ), cf. equation (10). Howevertransitional region (T >TNI) has been followed through
the quality of the agreement was not satisfactory and aby the standard procedure of ® tting the decay of the
much better ® t was obtained using the full Ornstein±G2 (r12 ) function to the Ornstein± Zernike expression to
Zernike form, which, with the long-range ordergive the value of the coherence length j which increases
component, 7 P2 8 2, is:as the temperature reduces towards T *. The ® t of the

temperature dependence of the deduced coherence length
G2(r12)=

C

r12
expA

Õ r12

j B+ 7 P2 8 2. (17)with the de Gennes expression (9) gives an estimate of
(TNI Õ T *)/TNI of 2 9́ Ö 10Õ 3 in reasonable accord with
the experimental values which are in the range 3 Ö 10Õ 3 Fitting the model-generated data, the value of j appears

to decrease with decreasing temperature below T *,to 4 Ö 10Õ 3 [24, 25].
Below the transition temperature, the structure is against a background of increasing 7 P2 8 . We should

also like to point out that the largest value of j observedreally that of short-range correlations superimposed on
the nematic long-range order. Figure 4 illustrates the was 7 8́ which was at the transition as de® ned by the
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494 D. Gonin and A. Windle

Figure 5. A plot of j against temperature spanning the
transition region. The values of j were determined by
® tting the Ornstein± Zernike equation (supplemented as
in equation (17) for data below TNI) to pair correlation
data from the model. The plots are ® tted with the de Figure 6. The local energy predicted by the model (dashedGennes expression, equation (9), above TNI and, for con- curve drawn through points) is compared with experi-venience, a similar symmetric expression below the mental data for enthalpy from [18] (full curve). Thetransition. model data have been scaled to give a transition at 316 K,

by scaling the value of A (§2.2) appropriately, and then
converting into J gÕ 1. The two curves were set to coincidediscontinuity in the 7 P2 8 plot. Figure 5 is a plot of j
vertically at the point of maximum curvature.and 7 P2 8 versus temperature across the transition range

determined from the best ® t to the Ornstein± Zernike
form (17). model re¯ ects the limited computer time allocated to

this particular aspect of the current work. Figure 7 (b) is
a plot to test the condition for the second order trans-3.3. Average energy as a function of temperature

The total energy of the system as a function of ition, namely that (dH/dT )max is proportional to L a/n,
where a and n are the critical exponents characterizingtemperature was measured by summing the individual

cell energies for a given model and averaging over time. the singularities of speci® c heat [25]. These parameters
have the values of 0 0́4 and 0 6́4, respectively. It isThis energy is compared with calorimetric data from

[18] in ® gure 6. The model data have been scaled to interesting to note that the data of Zhang are close to
linear on this plot which would actually suggest a secondgive a transition at 316 K, but scaling the value of A

(see §2.2) appropriately, and then converting into J gÕ 1. order transition, perhaps also re¯ ected in the curvature
of his data in ® gure 7 (b). However, the addition of theThe two curves were superimposed vertically at the

enthalpy corresponding to the sharpest curvature of datum for the 503 model does destroy the linearity and
would thus appear to provide signi® cant supportingeach plot, which can be identi® ed with the transition

point. It is apparent that in thermal terms the transition evidence for the presence of ® rst order character in the
transition.is broad, extending over several tens of degrees in either

direction. A proportion of the energy change is however
concentrated into a very small temperature interval, and 4. Microstructural description

4.1. Microstructural diagramsthis sharp feature has been taken as evidence for the
weak ® rst order character of the transition. One advantage of the LL model is that it is possible

to examine the predicted orientational structure as aAs a further check on the evidence for ® rst order
character of the transition, a plot was made of function of temperature. As with any model, especially

one as large as 503, the problem is one of how best to(dH/dT )max as a function of model volume, with the
implication that the peak height would go to in® nity display the results. Figure 8 shows the predicted struc-

ture of a section through the three dimensional modelwith the model volume for ® rst order behaviour. This
plot, ® gure 7 (a), reproduces the data of Zhang and his 10 K above the nematic± isotropic transition temperature

of 298 K (T =1 0́332TNI). The lines representing thebest straight line which we have extrapolated to higher
volumes. It would appear that the plot does genuinely orientation of the individual molecules shorten as the

orientation rotates out of the plane. It is possible tolinearize with the larger model size available now. The
signi® cant error band for the data point for the 503 identify regions of nematic type, referred to as nuclei;
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495Structural aspects of the N± I transition

to extend to much higher temperatures, at least ten
degrees or more above TNI , and these authors do not
explore this range. We have therefore prepared energy
distributions, P(E), covering a wider temperature range.

In the case of a homogeneous state of order, P(E ) is
a Gaussian function centred about the mean value E0

of the internal energy at the temperature T . The value
of E0 is related to the global order parameter 7 P2 8 with
expressions (11) and (13). The Gaussian is weighted by
the Boltzmann factor, with a width proportional to the
in® nite lattice speci® c heat C [5]:

P(E)=
A

C1/2 expA Õ
(E Õ E0 )2L d

2kT 2C B (18)

and the distribution becomes progressively narrower as
the temperature tends to 0 K.

In the LL model, the probability distribution is quite
large in the isotropic state, since the molecules are free
to rotate and to take any orientational position. Figure 9
shows the local energy distribution for the model with
the directors representing the molecular axes oriented
at random, ® tted with a Gaussian. Close to the transition,
and indeed at temperatures even greater than Ô 10 K on
either side of it, the calculated internal energy per site
does not follow a normal distribution (cf. ® gure 10). In
particular, the fact that the distribution at 1 0́332TNI is
wider than for the random case is not realistic, as theFigure 7. (a) Plot of the peak height of the (dH/dT ) curve
width should decrease gradually with increasing orderdetermined by Zhang and Zuckermann [12] (full points
(decreasing temperature) towards zero width at 0 K. Oneand the line ® t) as a function of the volume of the model.

The open circle was determined as a part of the current way to ® t the energy distributions in the transitional
work with a 503 model. (b) Zhang and Zuckermann’s data region is to use two Gaussian curves according to
plotted against L 0 0́62. A linear plot would indicate a equation (18) which would correspond to the moresecond order transition [12].

ordered and less ordered regions of the structure. Such
an approach is in line with the observation of a double
peak in the global distribution at temperatures verythey have been outlined by eye. As the model runs with

time, the nematic nuclei continually dissolve and reform. close to the transition [12]. In general, the proximity of
the ordered and disordered mean values, as well as theHowever, as the temperature is above the transition, the

orientations of the nuclei are not correlated with each width of both Gaussians, result in a global distribution
without double-peak structure. It should be emphasizedother, and there is no long-range orientational order.

The question remains as to the best means of delineating that in discussing two discrete types of region, there is
no implication of sharp borders, but instead a verythe more ordered from the less well ordered regions.
di� use interface between them. The fact that the two
distributions overlap re¯ ects the fact that there are low4.2. Distributions of local energy and their use in

classifying more ordered and less ordered regions energy cells in the less ordered regions (as also there are
in the isotropic state) and high energy cells as pocketsThe distributionof the local energy will be an indicator

of the presence of regions of di� erent levels of order. of disorder in the more ordered regions.
The next step is actually to relate the energy distribu-Zhang and Zuckermann [12] have shown the existence

of a double-well structure of the free energy appearing tions with spatial positions in the model. The objective
is to identify two types of region, one more ordered thanin a temperature range from about 0 3́ K below to 0 3́ K

above the transition. This feature indicates that two states the other, and each with a Gaussian energy distribution.
If each cell were ascribed to one of the two regions onof order are present simultaneously in the bulk over this

very narrow temperature range. However, the existence the basis of its energy, with the discriminating energy
being taken as the most probable (peak) energy, then theof short-range order in the isotropic phase is known
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496 D. Gonin and A. Windle

Figure 8. Part of a section of the model at T =1 0́332TNI with some nematic nuclei outlined. The director orientation out of the
plane is indicated by the length of the line; a director normal to the section would appear as a point.

energy cells, or small groups of such cells within the
more ordered regions, and vice versa, were assigned to
their host phase. The smoothing was achieved by calcu-
lating the energy of each cell, also taking into account
the average energy of the surrounding cells using:

Ei
smooth=

1

1+a+b
Ei

1+
a

1+a+b
Ei

6+
b

1+a+b
Ei

20

(19)

with Ei
1 the energy of cell i, Ei

6 the average energy over
its 6 nearest neighbours and Ei

20 the average energy over
its 20 next nearest neighbours. The parameters a and b

were set to 1 and 0 5́, respectively. Not only the energy
of the individual cells, but also the state of order aroundFigure 9. Energy probability distribution, P(E ), of a ran-
them, are thus taken into account. Cells with smootheddomly oriented 503 array of directors. The model data
energies less than the most probable value of 2 7́0 werehave been ® tted with a Gaussian distribution (solid line).

The energies in this ® gure and those in the similar ® gures allocated to the more ordered regions, and those with
which follow are absolute energies, whereas 7 Elocal 8 greater energy to the less ordered. The two component
de® ned by equation (16) has a negative sign. energy distributions based on the actual (unsmoothed)

energies obtained with this method ( ® gure 12) are two
Gaussians of equal magnitude. A degree of order can beregions, while distinguishable,would be interpenetrating.

Such a structural diagram would correspond to a simple determined for each type of region as that corresponding
to their Gaussian mean values, and we ® nd 7 P2 8 =0 5́0vertical division of the overall distribution for T =TNI,

® gure 11 (a). It is anticipated however that each of the and 7 P2 8 =0 1́8 for the more ordered and less ordered
regions, respectively.regions will have its own Gaussian distribution, as

illustrated in ® gure 11 (b). The same decomposition into two distinct types of
region was performed at di� erent temperatures, keepingIn order to map the two types of region, each retaining

its individual Gaussian distribution, the energies of the the same values of Elimit and a and b. These distributions,
shown in ® gure 13, illustrate the smooth change in thecells were smoothed spatially, so that isolated higher
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497Structural aspects of the N± I transition

Figure 10. Energy distributions for two temperatures on either side of TNI . It is apparent that there are di� culties in ® tting a
single Gaussian distribution. The lower temperature distribution is asymmetric, while the breadth of that at 1 0́332TNI is wider
than that for the random state model of ® gure 9.

Figure 12. The energy distribution at TNI , determined from
the model, analysed into the two component Gaussians
which represent the distribution of energies in the more
ordered (MO) and less ordered (LO) regions.

two types of region do not change signi® cantly over the
temperature range investigated (Ô 0 0́336TNI).

Where the component energy distributions have been
developed in this way, the distribution of the more and
less ordered regions in the model are available as a
matter of course. The diagrams which constitute ® gure 15
are sections through the 503 model at three di� erent
temperatures. Figure 15 (a) corresponds to 1 0́336TNI

(TNI+10 K), ® gure 15 (b) to TNI , and ® gure 15 (c) to
0 9́664TNI (TNI Õ 10 K); each of the structures is decom-Figure 11. The energy distribution at TNI : (a) divided at the

energy of the peak of the distribution into areas repres- posed into two ® gures, showing just the more ordered
enting more ordered and less ordered cells in relationship regions (top) and the less ordered regions (bottom).
to their six nearest neighbours; (b) the division into two Figure 15 (d) is another model of the structure at
Gaussian peaks of equal area.

1 0́336TNI , but in this case the nematic nuclei are depicted
on a larger scale.

relative amounts of the two regions across the transition
range. Note how the relative peak heights change very 4.3. Description of structure across the transition region

Focusing ® rst on ® gure 15 (a), which shows the struc-rapidly with temperature at the transition itself.
Figure 14 shows the peak height of the ordered compon- ture at 1 0́336TNI , the nematic nuclei are clearly apparent

and occupy a signi® cant volume fraction of the structure.ent of the distribution as a function of reduced temper-
ature. It is a measure of the volume fraction of the more It should be underlined again that structure is continu-

ally varying with time, and the top (more ordered)ordered region. The order parameters within each of the
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498 D. Gonin and A. Windle

Figure 13. The more ordered and less ordered components of the distribution at di� erent temperatures spanning the transition
region. Note how the relative magnitudes of the two component distributions change rapidly in the immediate vicinity of the
transition, while their peak positions and half width remain more or less constant, the less ordered (higher energy) distribution
being wider than the more ordered one as anticipated.

component of the ® gure shows the presence of orienta-
tion correlation within the nuclei, but the absence of
orientational correlation between them. The more
ordered regions are clearly the included p̀hase’, and the
less ordered region the matrix.

Moving next to the structure at 0 9́664TNI, ® gure 15 (c),

one sees a striking symmetry in appearance with
® gure 15 (a), the distribution of the less ordered regions
being very similar to that of the more ordered regions
at the equivalent temperature above the transition. The
structure just below the transition consists of a continu-
ous more ordered matrix region, which is the long-range
orientational order de® ning the nematic state, and
includes regions of signi® cantly poorer order.

The actual transition itself, ® gure 15 (b), corresponds
Figure 14. A plot of the amplitude of the ordered component to the point at which the nematic nuclei present abovedistribution as a function of reduced temperature. Note

TNI percolate so that the more ordered regions nowhow the amount of the more ordered regions reduces
discontinuously close to the transition. share a uniform orientation right across the model.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
2
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



499Structural aspects of the N± I transition

In this case, the common orientation happens to be ation of the orientations of random sites. It has been
suggested, [33] p. 152, that the fraction of sites òccupied’close to the x axis so there is a predominance of blue

coloured directors within the more ordered (top) section. can be expressed as 1 Õ exp (Õ DH/kT ). Furthermore,
the Hamiltonian of equation (13) means that the probab-Reduction in temperature below the transition leads to

an increase in the volume fraction of the long-range ility of randomization of the orientation ascribed to a
cell with respect to its immediate surroundings dependsordered material with a corresponding reduction in the

extent of the isolated, less well ordered regions as shown on the orientational order of those surroundings.
These factors mean that the percolation approach toin ® gure 15 (c).

the transition, while being useful as a descriptor, is not
straight-forward. Indeed, according to Coniglio et al.5. Discussion

5.1. General [34] who worked with the three dimensional Ising
model, the percolation point (appearance of the ® rstThe Lebwohl± Lasher model is remarkable in that

while all chemical detail is reduced to a simple in® nite cluster) and the critical point (appearance of
magnetization, in the case of the ferromagnet studied inHamiltonian based on sin2 (Dh ), the model is nevertheless

very successful in predicting much of the character of this reference) do not coincide in the 3 dimensions case.
However, probably the closest developments have beenthe nematic state in general, and the nematic± isotropic

transition in particular. in the context of the percolation approach to the
Heisenberg model of the paramagnetic± ferromagneticThere is evidence that the structure can, in the region

of TNI , be represented by two regions, one less ordered, transition, where magnetization states are able to assume
any orientation rather than being restricted to up andthe other more ordered. With decreasing temperature in

the isotropic phase the nematic nuclei, which are ran- down states as in the Ising model. Here the divisions of
the structure into regions of di� erent degrees of orderdomly distributed in both time and space, increase in

volume fraction. On cooling through the transition itself, are seen to be the basic thermal excitations of the system,
just as phonons are those of solids [35]. Yet, percolationthese nuclei appear to percolate. Hence, while there is a

comparatively gradual increase in local order summed theory is not yet exact for ferromagnetic systems, nor,
by implication, for nematics. The fact that the orderedthroughout the structure, as indicated by the consider-

able width of both recorded and simulated enthalpic regions e� ectively have a surface energy, means that the
treatment of the percolation threshold is in doubt formaxima, there is a critical point at which P2 for an

in® nite model and the presence of long-range (i.e. a start.
What is more, it is possible that the percolationpercolating) orientational order, as would be indicated

by birefringence, both increase discontinuously from relevant to the critical point of the phase transformation
is between the nuclei themselves. However, even thiszero. Below the transition, the more ordered region is

continuous throughout the specimen, even though it picture is complicated as the nuclei are of all conceivable
orientations and the percolating phase, by de® nition, iscontains signi® cant but isolated regions of disordered

material, and it can be considered as the matrix of one orientation. The fact that the volume fraction of
the more ordered material at the transition is seen fromphase. The order parameter within the more ordered

region at the transition temperature is estimated to be the model to be of the order of 50% must be contrasted
with the critical volume fraction for continuum percola-7 P2 8 =0 5́.
tion which, in three dimensions, has the value of 0 1́6
and is remarkably insensitive to the structure of the5.2. T he relevance of percolation theory

It is useful to consider the degree to which the packing, whether ordered or not (see, for example, [33]
p. 186). Is it possible that one third of the growing nucleiobserved behaviour of the model in the region of the

transition is consistent with simple percolation theory. are able to recognize each other as having su� ciently
similar orientations so that they can clamp andFor a site percolation model on a three dimensional

simple cubic lattice, the fraction of sites occupied at amalgamate?
While the question must remain open, it is worthpercolation, (the percolation threshold) will be 0 3́1.

However, this simple analysis assumes several factors noting that in the formation of a liquid crystalline phase,
there is a mechanism by which two impinging nuclei ofwhich need to be examined in assessing its applicability

to the nematic± isotropic transition. Firstly, it is possible similar although not identical orientation can merge.
Where two nuclei approach within the site pair correla-to view mean ® eld approaches in terms of in® nite

dimensionality (which can be rationalized in terms of a tion distance, the region between them can be described
as a wall, of a type represented by the two limiting casesBethe lattice, or tree) where the percolation threshold

will be 0 5́. More signi® cantly, it is necessary to relate of Bloch and Neel walls in ferromagnetics. Now, this
wall can lower its energy by increasing its width viathe fraction of unoccupied sites to the thermal randomiz-
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500 D. Gonin and A. Windle

(a) (b)

(b)(a)

Figure 15. Sections through the 503 model at three di� erent temperatures. In each case (a, b and c) the upper diagram represents
the more ordered phase, the lower diagram represents the more ordered phase, the lower diagram the less ordered, both being
complementary. The orientations are represented by the orientation of the director line on the page and its length: in addition
the orientation is colour coded. (a) T =1 0́332TNI ; (b) T =TNI ; (c) T =0 9́686TNI ; (d) is an enlarged section of a model prepared
under the same conditions as that in (a) showing the nematic nuclei.

elastic relaxation, which will lead to a more generalized 6. Conclusions

A 503 Lebwohl± Lasher model has been successfullyelastic distortion in the combined entity. Such behaviour
can be observed in regions of the more ordered, just run. The size of the model, which is 53 larger than the

average coherence length of short range order in thepercolating phase, seen in ® gure 15 (b). It is also possible
that the energetics of the process can contribute to isotropic phase, has allowed a direct description of

behaviour of a nematic material. The model gives valuesthe transient, ® rst order character of the transition. The
removal of the distorted boundary material between the of 7 P2 8 which agree well with experiment, and the

Ornstein± Zernike ® t of the angular pair correlationadjacent nuclei will itself contribute to a rapid increase
(with temperature) of the volume of the more ordered coe� cient gives a value of the stability limit of the

isotropic phase T *=0´997TNI also in good agreementregions as demonstrated by the data of ® gure 14.
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501Structural aspects of the N± I transition

(c) (d)

(c)

Figure 15. (Cont.)

with experiment. These agreements engender con® dence compelling. However, the application of this theory to
the nematic± isotropic transition, as indeed to the equiva-that the model is working properly.

The model has been applied primarily to predict lent ferromagnetic± paramagnetic one, is far from
straightforward. This line of pursuit is likely to be highlymicrostructures in the region of TNI as follows. Above

TNI , isolated nuclei of more ordered (nematic) regions rewarding.
occur, which are not orientationally correlated with each
other; TNI corresponds to the point where the nematic This research was funded by a research training

fellowship at the research centre of the Commission ofnuclei percolate to produce the nematic superdomain.
Below TNI the structure consists of the long-range the European Communities, under the Human Capital

and Mobility Programme. The authors wish to acknow-ordered nematic matrix phase containing isolated
regions of considerably disordered material which shrink ledge helpful discussions with Professor Philip Taylor,

Professor Tim Slukin, John Hobdell and David Hoyle,with further reduction in temperature.
The parallels between the observed transition and the support of Marc Lavine with particular aspects

of the computational programme.( ® gure 15) and the precepts of percolation theory are
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